
Markup Languages und Anwendungen

Marc Seeger (20488)
mail@marc-seeger.de
Computer Science and Media,
HdM Stuttgart, WS 08/09

 Ruby
 XML Mapping Libraries
 YAML

A language that doesn't
affect the way you think
about programming, is not
worth knowing

Alan Perlis

 Origin:

 Yukihiro "Matz" Matsumoto

 Japan 1993

 1st english book: 2000
 Ruby on Rails: 2004

 Variable Declaration:

 Function Declaration:
do_something("Marc", 4)


MarcMarcMarc
12

 ClassNames
 method_names and variable_names
 methods_asking_a_question?
 slightly_dangerous_methods!
 @instance_variables
 $global_variables
 SOME_CONSTANTS or OtherConstants

Principle of Least Surprise

?

 No Primitives, Integers and floats are objects!

 -1.abs => 1

;
No Semi-colons

 nil, not null
 nil is an object!

 nil.nil? => true

 nil.class => NilClass

 nil and false are false

 everything else, including 0, is true

 Expression oriented syntax.

 Almost everything returns a value

 Methods automatically return their last
expression.

 Single Inheritance

 But mixins are available (= Interface with implemented methods)

This module implements the mixin

A class that doesn‘t do that much

inheriting
and mixing!

And mixed in that one

We inherited that one

 Classes are always open (even built in classes)

Another Example from Rails:
1.hour.from_now

 Procedural
 Object Oriented
 Functional

irb(main):001:0> 42.methods
=> ["%", "odd?", "inspect", "prec_i", "<<", "tap", "div", "&", "clone", ">>", "p
ublic_methods", "__send__", "instance_variable_defined?", "equal?", "freeze",
„to_sym", "*", "ord", "+", "extend", "next", "send", "round", "methods",
"prec_f„, "-", "even?", "singleton_method_added", "divmod", "hash", "/",
"integer?", "downto", "dup", "instance_variables", "|", "eql?", "size",
"object_id", "instance_eval", "truncate", "~", "id", "to_i", "singleton_methods",
[…]

irb(main):005:0> nil.class
=> NilClass

irb(main):002:0> nil.hallo_hdm
NoMethodError: undefined method `hallo_hdm' for nil:NilClass

from (irb):2

 Strong typing
▪ " 5 " / 2  „NoMethodError“

 Weak typing
▪ " 16 " / 2  8 (e.g. in Perl)

Ruby is strongly typed! (Java too)

 Explicit: int a = 5
 Implicit: a = 5

Ruby is implicitly typed! (Java explicitly)

 Static typing

 The compiler checks types during compilation

 Dynamic typing

 The compiler doesn‘t check types during
compilation

Ruby uses dynamic typing (Java uses static typing)

„Blocks are unnamed functions“

Define:

Call:

Result:

The current piece of
the collection we are
working with

What we are going
to do with it

A closure object has:
•code to run (the executable)
•state around the code (the scope)

So you capture the environment, namely the local variables, in the
closure. As a result, you can refer to the local variables inside a closure

Idea: Function returning a function

In action:

 Ruby VM (Ruby 1.8)
 YARV (aka Ruby 1.9)
 Rubinius
 MacRuby
 Jruby
 IronRuby
 Hotruby

 Gem:

 Search:

 Installing:

 Gem:

 Usage:

Enough with the
Jibber-Jabber

 XML Object

 XML-Object

 XmlSimple

 XML Object

 ROXML

 XML::MAPPING

 HappyMapper

http://xml-object.rubyforge.org/

„Tools like JSON or YAML are a much

better fit for this kind of job, but one

doesn’t always have that luxury.“

… attempts to make the accessing of small,
well-formed XML structures convenient, by
providing a syntax that fits well in most Ruby
programs.

>ruby test.rb
At first, Elements are checked: Bread Recepie
You can get the Attributes though: an awesome recepie for bread

Question notation

Elements or attributes that look like booleans are “booleanized” if called by their question names (such as enabled?)

Question notation

Elements or attributes that look like booleans are “booleanized” if called by their question names (such as enabled?)

Question notation

Elements or attributes that look like booleans are “booleanized” if called by their question names (such as enabled?)

Question notation

Elements or attributes that look like booleans are “booleanized” if called by their question names (such as enabled?)

Question notation

Elements or attributes that look like booleans are “booleanized” if called by their question names (such as enabled?)

Recursive
The design of the adapters assumes parsing of the objects recursively.
Deep files are bound to throw SystemStackError, but for the kinds of
files I need to read, things are working fine so far. In any case, stream
parsing is on the TODO list.

http://xml-simple.rubyforge.org/

a Ruby translation of
Grant McLean's Perl
module XML::Simple

 xml_in()
 xml_out()

A hash containing options

The input file

Usage:

http://roxml.rubyforge.org/

ROXML

roxml_1.0_beta roxml-1.0_beta June 28, 2006

ROXML 1.0 roxml-1.0.zip July 1, 2006

ROXML 1.1 Beta ROXML 1.1 Beta
September 24,

2006

ROXML 1.2 ROXML 1.2 November 10, 2007

ROXML 2.2.0 November 3, 2008

ROXML Features
 Read Ruby objects from XML
 Write Ruby objects to XML
 Annotation-style methods for XML mapping
 One-to-one (composition) Ruby to XML
 One-to-many (aggregation) Ruby with array

to XML

Source: http://roxml.rubyforge.org

http://xml-mapping.rubyforge.org/

≈ROXML

XML::Mapping::ArrayNode
XML::Mapping::BooleanNode
XML::Mapping::HashNode
XML::Mapping::NumericNode
XML::Mapping::ObjectNode
XML::Mapping::SingleAttributeNode
XML::Mapping::SubObjectBaseNode
XML::Mapping::TextNode

XML::Mapping::ChoiceNode

single-attribute nodes}

http://xml-mapping.rubyforge.org/classes/XML/Mapping/ArrayNode.html
http://xml-mapping.rubyforge.org/classes/XML/Mapping/ArrayNode.html
http://xml-mapping.rubyforge.org/classes/XML/Mapping/BooleanNode.html
http://xml-mapping.rubyforge.org/classes/XML/Mapping/BooleanNode.html
http://xml-mapping.rubyforge.org/classes/XML/Mapping/HashNode.html
http://xml-mapping.rubyforge.org/classes/XML/Mapping/HashNode.html
http://xml-mapping.rubyforge.org/classes/XML/Mapping/NumericNode.html
http://xml-mapping.rubyforge.org/classes/XML/Mapping/NumericNode.html
http://xml-mapping.rubyforge.org/classes/XML/Mapping/ObjectNode.html
http://xml-mapping.rubyforge.org/classes/XML/Mapping/ObjectNode.html
http://xml-mapping.rubyforge.org/classes/XML/Mapping/SingleAttributeNode.html
http://xml-mapping.rubyforge.org/classes/XML/Mapping/SingleAttributeNode.html
http://xml-mapping.rubyforge.org/classes/XML/Mapping/SubObjectBaseNode.html
http://xml-mapping.rubyforge.org/classes/XML/Mapping/SubObjectBaseNode.html
http://xml-mapping.rubyforge.org/classes/XML/Mapping/TextNode.html
http://xml-mapping.rubyforge.org/classes/XML/Mapping/TextNode.html
http://xml-mapping.rubyforge.org/classes/XML/Mapping/ChoiceNode.html
http://xml-mapping.rubyforge.org/classes/XML/Mapping/ChoiceNode.html

http://happymapper.rubyforge.org/

„Making XML fun again“

has many

typecasts

Camel Case XML Tags to Ruby method names

(rhymes with “camel”)

1. easily readable by humans.
2. matches the native data structures of agile

languages.
3. portable between programming languages.
4. consistent model to support generic tools.
5. supports one-pass processing.
6. expressive and extensible.
7. easy to implement and use.

 JSON/YAML = human readable data interchange format

 JSON == simplicity + universality
 trivial to generate and parse

 reduced human readability

 YAML == human readability + serializing native data structures
 harder to generate and parse

 easy to read

JSON

YAML

JSON.valid? YAML.valid!

 …is Sequences, Maps, Scalars

 Seq = Array

 Map = Hash

 Scalars = String, Integer, Float, Time, NilClass

Sequence:

Array:

Map:

Hash:

Map of
Scalars:

Hash of
Objects:

Native typing is implicity determined in plain scalars.

 YAML output:

 YAML input:

 More than 1 document

 Ruby code

 Output

Won‘t somebody please think of
the children objects!

 Live Demo :D

Problem: The !ruby/object type is only understood by YAML.rb.

Solution:

 http://www.kuwata-lab.com/kwalify/

 YAML and JSON are simple and nice format
for structured data and easier for human to
read and write than XML. But there have
been no schema for YAML such as RelaxNG or
DTD. Kwalify gets over this situation.

http://www.kuwata-lab.com/kwalify/
http://www.kuwata-lab.com/kwalify/
http://www.kuwata-lab.com/kwalify/

Fragen?

 Each project‘s website
 Some useful closures in Ruby

http://www.randomhacks.net/articles/2007/02/01/some-useful-closures-in-ruby
 Kai Jäger: Ajax in der Praxis Grundlagen, Konzepte, Lösungen

ISBN-10: 3-540-69333-5
 Using Ruby - An Introduction to Ruby for Java Programmers

http://onestepback.org/articles/usingruby/index.html
 Ruby for Java Programmers

http://www.softwaresummit.com/2006/speakers/BowlerRubyForJavaProgrammers.pdf
 Happy Mapper: Making XML fun again:

http://railstips.org/2008/11/17/happymapper-making-xml-fun-again
 YAML Working draft 1.2

http://yaml.org/spec/1.2/
 YAML Cookbook:

http://www.nt.ntnu.no/users/haugwarb/Programming/YAML/YAML_for_ruby.html

http://www.randomhacks.net/articles/2007/02/01/some-useful-closures-in-ruby
http://www.randomhacks.net/articles/2007/02/01/some-useful-closures-in-ruby
http://www.randomhacks.net/articles/2007/02/01/some-useful-closures-in-ruby
http://www.randomhacks.net/articles/2007/02/01/some-useful-closures-in-ruby
http://www.randomhacks.net/articles/2007/02/01/some-useful-closures-in-ruby
http://www.randomhacks.net/articles/2007/02/01/some-useful-closures-in-ruby
http://www.randomhacks.net/articles/2007/02/01/some-useful-closures-in-ruby
http://www.randomhacks.net/articles/2007/02/01/some-useful-closures-in-ruby
http://www.randomhacks.net/articles/2007/02/01/some-useful-closures-in-ruby
http://onestepback.org/articles/usingruby/index.html
http://www.softwaresummit.com/2006/speakers/BowlerRubyForJavaProgrammers.pdf
http://railstips.org/2008/11/17/happymapper-making-xml-fun-again
http://railstips.org/2008/11/17/happymapper-making-xml-fun-again
http://railstips.org/2008/11/17/happymapper-making-xml-fun-again
http://railstips.org/2008/11/17/happymapper-making-xml-fun-again
http://railstips.org/2008/11/17/happymapper-making-xml-fun-again
http://railstips.org/2008/11/17/happymapper-making-xml-fun-again
http://railstips.org/2008/11/17/happymapper-making-xml-fun-again
http://railstips.org/2008/11/17/happymapper-making-xml-fun-again
http://railstips.org/2008/11/17/happymapper-making-xml-fun-again
http://yaml.org/spec/1.2/
http://www.nt.ntnu.no/users/haugwarb/Programming/YAML/YAML_for_ruby.html

