
Alternative Infrastucture

if we do it, we might as well do it
right

Experiments

Twitter clone "retwis":
 Key Value Store: redis
 Web Framework: sinatra

Mediawiki:
 Webserver: Nginx (!= Apache)
 PHP: php-fpm (!= mod_php)

Retwis-RB
"An example Twitter application using the Redis key-value
database" --> http://github.com/danlucraft/retwis-rb

sinatra redis

require 'rubygems'
require 'sinatra'
get '/hi' do
 "Hello World!"
end

require 'rubygems'
require 'redis'

r = Redis.new
puts "set foo to bar"
r['foo'] = 'bar'

Redis Benchmark

root@keyvalue:~# redis-benchmark -q

SET: 105273.69 requests per second
GET: 107526.88 requests per second
INCR: 95238.10 requests per second
LPUSH: 121987.80 requests per second
LPOP: 108728.26 requests per second
PING: 133386.66 requests per second

testing @ HdM

CPU:
100% httperf
57% redis-server
40% ruby1.9.1

Durchsatz: 6 req/s Ò_ó

Context Switches?

?!

server ->

home ->

Home Tests:

httperf --server=localhost --port=4567 --uri=/test --num-
conns=100 --num-calls=50

Webserver: "thin"

EventMachine:
a library for Ruby, C++, and Java programs. It provides event-
driven I/O using the Reactor pattern

single connection

Total:
connections 1
requests 500
replies 500

home

Request rate 56.7 req/s
(17.6 ms/req)

Reply rate
[replies/s]

min 41.6
avg 41.6
max 41.6

Reply time
[ms]

response 17.6
transfer 0.0

Reply status: 1xx=0 2xx=500 3xx=0 4xx=0 5xx=0

test-duration 8.824 s

100 connections

Total:
connections 100
requests 5000
replies 5000

home

Request rate 48.5 req/s
(20.6 ms/req)

Reply rate
[replies/s]

min 16.2
avg 48.7
max 71.6

Reply time
[ms]

response 20.6
transfer 0.0

Reply status: 1xx=0 2xx=5000 3xx=0 4xx=0 5xx=0

test-duration 103.160 s

2nd Experimental Setup

Replacing
Apache+mod_php by

Nginx+PHP-FPM

Nginx ...

is...
a lightweight Web Server
a Reverse Proxy
an IMAP/POP3 proxy

used by 14,988,610 domains today
implmented by larges sites as WordPress, Github,
SourceForge etc.

Nginx vs Apache

Apache
process based
each connection requires a new thread
high concurrency

 -> high memory usage
 -> CPU overhead (e.g. context switches)

PHP is usally included in Apache Web Server as module (mod_php)

Nginx

fork of apache 1.3 with the multi-processing ripped out in favor of an
event loop

asynchronous model (event based)
uses only one thread for all connections (master thread)
PHP is used as seperate process over FastCGI (PHP-FPM)

Web Server and PHP-FPM are used as seperate applications
communication via TCP-connetions or Unix-sockets

 -> little overhead due to communication costs

Event Loop

What is an event loop?

usually you write code like:
var result = db.query("select..");
result.do_something();

but an event loop looks like:
db.query("select..", function (result) { result.do_something()});

Motivation
Apache+mod_php compared to Nginx+php-fpm

(comparison made by Boštjan Škufca - http://blog.a2o.si))

5 Different scenarios
HelloWorld.php – simple echo of “Hello, World!” (13 bytes),
HelloWorld.txt – static file with “Hello, World!” (also 13 bytes)
100KB.txt – static content
1MB.txt - static content
index.php – more complex site with several DB-queries, HTML
template parsing…

Tests with keepalive-feature [-k] and without keepalive
(same socket can be used for several requests)

Benchmark tests conducted using
ApacheBench
ab -n NREQ -c NCONC [-k] http://server.domain.
com/bench/FileName
NREQ is the number of requests:
- HelloWorld.php: 500000
- HelloWorld.txt: 500000
- 100KB.txt: 500000
- 1MB.txt: 50000
- AppFront: 5000

NCONC = number of concurrent requests
1 ,2,4,8,16,32,64,128,256,512

Benchmark Setup

PHP-generated Hello World!

Apche is always faster than Nginx
This demonstrates the overhead of the
communication between Nginx and PHP-
FPM

Static Hello World!
Nginx with keepalive is more than twice as fast as
Apache
This demonstrates the overhead that is caused by
creating TCP-connections

Static 100kb.txt File

This test should demonstrate a „real world
“ example of a static page request
Again, Nginx is twice as fast as Apache

1MB.txt File
This test demonstates a more complex file transfer
Keepalive was not tested, because the file size is so
large that TCP-connections aren‘t important
Nginx is just slightly better

Application Frontpage (index.
php)

Again a „real world“ example with a more
complex PHP-site
Nginx is just slightly better

Apache PHP vs TXT

Dynamically generated content and static
content are nearly equally fast

Nginx PHP vs TXT

Nginx serves static content twice as fast
as dynamic content

Additional Comparison

Conclusion

When is it worth to use Nginx?
If you have limited hardware resources
(e.g. on VPS)
If you have a lot of static content

Further Alternative
Nginx works as reverse proxy
static content is passed by Nginx (e.g. Pictures)
dynamic Content will be forwarded to an Apache

 behind the proxy

advantages:
static content will be returned very fast
slow user connections do no longer hold

 resources, because the "blocking"
 connection is now between Nginx and
 Apache; not the user and Apache

our problems

mysql dumps:
create dump + copy dump + insert dump = hours

loadtesting:
client == server

--> no testing for high concurrency, no isolation of variables.
client too slow
different configurations

keepalives
Nginx workers/processes vs apache threads/clients
...

